If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+t-24=0
a = 1; b = 1; c = -24;
Δ = b2-4ac
Δ = 12-4·1·(-24)
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{97}}{2*1}=\frac{-1-\sqrt{97}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{97}}{2*1}=\frac{-1+\sqrt{97}}{2} $
| 5t2−4t=11 | | 16x+13=-8x+11 | | -3c^2+8c=0 | | 14x+17=4x+10, | | 8x+16=1x+16 | | -10x+6=1x+-13 | | x−2 5=2 3−3x−2 6 | | 4x+7=2-x+4 | | -4x-9=-10-5x | | 3c^2-18c+24=-2 | | x+13=−4x+11 | | 1050m+950=1475 | | x/3-4=1.5 | | -9b+7-2b=40 | | (2x+3)^2+9=57 | | 8x-3x-8=20 | | 4y-26=82 | | -2=-y-7 | | 6x+3°=8x-37 | | 5y+6×=50 | | -6x+5=33 | | 7x^2-1=-4 | | 16-r÷7=21 | | 7x^2-1=4 | | 14=9+s/3 | | 5/6y=169/2 | | 5+8m=-+1 | | 7/8=x/28.8 | | 5(x+4)=2(x+1) | | 1y+10=4 | | -7.3q+16=-38 | | 2.9x-13.73=8.6 |